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function after the origin peak and the intramolecular 
vectors have been removed. This corresponds to an 
extension of the point made in PT that the origin peak 
may lead to false peaks in the Q-function, but can be 
removed. 

The expression for T(t) obtained by CB represents 
in one respect a more general form of the Q-functions 
than that given by PT. Since T(t) is expressed in terms 
of Fro(h), the transform of the individual molecule, it 
need not be calculated, as suggested by the expressions 
given above, in terms of a set of discrete atoms. If, 
for example, a molecule of a protein has been obtained 
at less than atomic resolution, its transform may still 
be calculated by numerical methods from the electron 
density. The possibility of such an extension has been 
suggested previously (Tollin, 1966b) in terms of the 
Q-functions. In this case the quantities CC' and SS'  
in the notation of PT must be obtained by such nu- 
merical integration. At what resolution such a function 
will prove useful is a matter for experiment. 

The Q-functions have now been successfully applied 
to the determination of the structure of a number of 
molecular crystals (for example, Young, Tollin & 
Sutherland, 1968; Tollin, Young & Wilson, 1968). 
Recently the author has applied the Q-function to the 
determination of the position in the unit cell of the 
seal myoglobin molecule (Scouloudi, 1960) once its 
orientation had been determined. The orientation was 
found using the rotation function (Rossmann & Blow, 
1962) to compare the 5.8 A resolution data for seal 
and sperm whale myoglobin (Tollin, 1966b). A report 
of the details of this determination is in preparation. 
However, it is worth noting here that since the protein 
molecule is so large that many atoms are in positions 

which would give rise to non-Harker peaks in the 
Harker section, it is essential in this case to remove 
the origin peak from the Patterson. 

It should be noted that, as Hoppe& Paulus (1967) men- 
tion in a footnote, 'it is possible to translate operations 
with convolution molecules into reciprocal space . . . '  
The Q-functions are closely similar to the reciprocal 
space equivalent of the convolution molecule method 
where the sum of the convolution molecule and the 
Patterson structure is used as the criterion of fit. 

The author is grateful to Professor W. Cochran, for 
his views on the comparison given here. 
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A matrix formalism is developed for calculating the elastically scattered waves diffracted by an infinite 
plane parallel crystal. Introduction of projection operators makes it possible to cover both Laue and 
Bragg reflected waves under the same formalism. 

1. Introduction 

The basic problem to be considered is the solving of 
the time-independent Sehr/Sdinger equation 

(V 2 + k2) ~,(r) = u(r) ~,(r) (1.1) 

for a potential V(r) = (h2/2lOu(r), periodic inside a three- 
dimensional crystal lattice and zero outside, k is the 

wave number and/t  the mass of the particle associated 
with the scalar field ~,(r). In diffraction experiments an 
incident wave falls upon the crystal and an outgoing 
wave scattered by the crystal is detected. This is de- 
scribed more adequately by the integral equation 

1 ( exp ik l r - r ' l  u(r,)~u(r,)d3r, (1-2) 
~u(r)=~,0(r)- -4~ Jr, ....  lr-rTi 
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than by equation (1.1) itself. Here ~'0(r) represents the 
incident wave and the integral, carried out over the 
crystal volume V represents the diffracted wave. The 
advantage of equation (1.2) over equation (1.1) is that 
it automatically takes care of all the boundary condi- 
tions, which are rather complicated if correctly applied 
to equation (1.1). For small crystals a reasonable ap- 
proximation is obtained by substituting ~,(r'), in the 
integrand, by the incident wave ~u0(r'). This is known 
as the first order Born approximation in quantum 
mechanics, and one arrives at the kinematical theory 
of diffraction (or geometrical), according to terminol- 
ogy commonly used in the literature. In this case every 
atom of the crystal is assumed to be illuminated by 
the same incident wave and all the multiple-scattering 
effects, which play an important role in large crystals, 
are neglected. Thus for large crystals better approxima- 
tions are needed. Every theory extending beyond the 
first order Born approximation is called a dynamical 
theory. 

In this paper we consider only the diffraction of 
plane waves by an infinite plane parallel crystal, whose 
unit cells are centred at rn = hlal + hzaz + h3a3. al, az, a3 
are three lattice vectors, which form a right hand 
system (al x az. a3 >0), and hl,hz are integers taking 
values 0, + l , . . .  + c,o and h3 is an integer taking values 
0 ,1 ,2 , . . .  N - 1 .  The crystal is thus described by N 
infinite crystal planes each obtained from the former 
by the same translation a3. One way of treating the 
problem is to introduce a three-dimensional Fourier- 
expansion for the potential and the amplitude of the 
field, first applied to X-rays by Ewald (1916, 1917) and 
to electrons by Bethe (1928). The disadvantages of this 
method are that it does not account satisfactorily for 
absorption and incoherent scattering, and the calcula- 
tions are very difficult if the Bragg condition is to be 
nearly satisfied for more than one set of crystal planes 
simultaneously. These difficulties can be avoided, how- 
ever, if the symmetry of the situation is taken into 
account from the very beginning and if it is realized 
that the problem is essentially one-dimensional, the 
relevant variable being the depth from the upper sur- 
face of the crystal. This is the basic idea of the matrix- 
multiplication method introduced in the electron dif- 
fraction case by Sturkey (1957), Fujimoto (1959), and 
Howie & Whelan (1961). 

A comparison of the different forms of the dynam- 
ical diffraction theory and later developments can be 
found in a review article by Moli~re (1966). Most of 
the matrix methods presented so far are limited to 
small scattering angles and are therefore not directly 
applicable to neutrons or X-rays. Kato (1963) has, 
however, considered the forward scattering, or Laue 
case, where the scattering angle may be large, but does 
not account for the backward scattered waves. 

We shall first solve the diffraction pattern from an 
infinite doubly periodic crystal plane, for which a dif- 
fraction matrix can be defined. With the help of the 
diffraction matrix and projection operators the case of 

N crystal planes can be conveniently treated by matrix- 
multiplication no matter through which face the dif- 
fracted waves leave the crystal. 

2. Diffraction by an infinite doubly periodic crystal plane 

Let us suppose that only one of the planes is present 
with h3 fixed. Let us further suppose that a plane wave 
exp ik0. r is impinging on the plane from the negative 
side, by which we mean that the relation k0. al × a2 > 0 
holds. Consider first a system of point scatterers such 
that the scattering power of each unit cell is concen- 
trated at its centre, characterized by scattering length b. 
Hence u(r) is represented by the following sum of 
&functions: u(r)= 4~zb Z Z d(r--rh) and equation (1.2) 

hi h2 
takes the form 

~(r)= exp (ik0. r ) - b  f -exp ik01r-r'l 
v [r-r ' l  

x [ Z Z d(r'-- rh)l~(r')d3r ' , (2.1) 
hi h2 

where the volume V encompasses the whole scattering 
plane. We start with the first order Born approxima- 
tion and accordingly the scattered wave gs(r)= ~,(r)- 
exp ik0 • r is given by the expression 

exp ik0[r- rh[ 
~s(r) = - b  Z Z exp (ik0. rh) . . . . . . . . . . . .  (2"2) 

1,1 h2 Ir--rh[ 
We are more interested in the plane wave expansion 
of ~'s(r) and therefore consider the scalar product 

S± = 1 l (2~)3 ~,s~(r) exp ( - i k l .  r)d3r. (2.3) 
all space 

Because the analytic expressions of ~'s(r) are eventually 
different in the upper half space (limited to the positive 
side of the scattering plane) and in the lower half space 
(limited to the negative side) g+(r) is defined as an 
analytic function of r in all space such that the relation- 
ship ~u+(r)= ~'s(r) holds in the upper half space and 
~;-(r) is defined as another analytic function of r such 
that the relationship ~';-(r)= ~us(r) holds in the lower 
half space. When calculating S ± it is convenient to 
introduce a rectangular coordinate system (x,y,z)n, 
whose x and y axes lie on the scattering plane and 
whose z coordinate is given by the equation z=  
( r - h 3 a 3 )  . aa × a2 / l a l  × a21. The direction of the x axes 
can be fixed by choosing klz=O. Inserting (2.2) into 
(2.3) and partially changing the order of summation 
and integration we get 

S*= _ _ .  (2~) 3 dz Z Z exp [ i (k0-k l ) .  rh-- iklzz] 
h~ h2 

~ -  . ~o exp iko VxZ+y 2 + Z 2 
x oJ-'' odxdyexp ( - i k w y )  ] / ~ - . + Z  ~ .... 
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when the origin of the coordinate system (x,y,z)h is 
at rn. The integral over x and y is calculated in the 
Appendix and found to be (2rci/k',) exp ik', [zl, where 

k; = l/ko-~-k~y . (2.4) 

klu is the projection of kl onto the scattering plane. 
Obviously the exponential exp ik'~lzl must be written 
as exp ik',z, when dealing with S + and as exp -t'k'~z, 
when dealing with S-  according to the previous con- 
vention. The remaining summations over ha and h2 and 
the integration over z can be performed separately and 
S ± may be written as 

S - 4 -  ~ _ _  
2rcib 
• exp ( ih3(ko-kl) .  a3) k; 

[~-I+~dzexpi(+_k'z-klz)z] 

+°° ] 
- ~  Z' exp ihl(k0-kl)  • at 

L" exp ihz(ko-ka) • az • 
- - o o  

From the theory of spectral representations Friedman 
(1965) we know that the first bracket is the 0-function 
O(+ k'~-kaz) and the last two brackets can be written 
as sums of the 0-functions: 

~r 0[(k0- k l ) .  at - 2zd] ; l =  0, + 1, + 2 , . . .  
1 

27 6[(k0- ka) • a z -  2nm] ; m = 0, + 1, + 2 , . . .  
m 

Thus we obtain 

2rcib 
S ±= k~--- exp [ih3(k0-ka). a3]0(+_ k'~-kaz) 

× { Z" O[(ko-kx). aa-2rcl]} { Z" O[(ko-kl) .  a2 
l m 

-2zorn]} . (2.5) 

/ 

- t / !  ---- 

/ 
/ 

I 

, f 2 

i , 1 

Fig. 1. The scattering plane (left) and its reciprocal lattice plane 
(right). Reciprocal lattice points inside the circle are respon- 
sible for the diffracted waves. 

For the lattice plane (al ,  a2) a reciprocal lattice plane 
(el,e2) can be defined with the property a~. ej=0~j 
where 0~j is the Kronecker symbol. With the help of 
a construction in the reciprocal lattice plane it is very 
easy to see which are the effective terms of equation 
(2.5). Referring to Fig. 1 we project on the reciprocal 
lattice plane the vector k0 ending at the origin O. With 
the projection point P as its centre we draw a circle 
with radius Ik01 in the reciprocal lattice plane. Each 
index pair (l,m) of equation (2.5) defines a product of 
three 0-functions, the arguments of which can only be 
zero simultaneously when l,m take values such that 
the reciprocal lattice points are inside, or at, this circle. 
Thus these are the only reciprocal lattice points capable 
of generating diffracted waves. 

From the equations (2.3) and (2.5) and from the 
identity 

1 I (2~) 3 exp [ i (ko-kl )  • r]d3r - lal x azl0(ko~ 

a l l  s p a c e  

- kl~)0[(ko- k 0 .  m]0[(ko- k 3 .  a2] 

we find the following plane wave expansion for ~,~(r) 

~u~(r)= - i  ~r q}m exp ih3(ko-k}m), a3 e x p / k ~  . r .  
lm 

(2.6) 

Here the reftexion coefficients qN are given by the 
formula 

2rob 2~r Nob (2.7) 
q~ = Iklmzaa x a21 = [kimzi " 

No being the number of unit cells/cm 2 at the scattering 
planes. The wave vectors ktm of the diffracted waves 
are most conveniently obtained from Fig. 1. The pro- 
jection of ktm on the reciprocal lattice plane is simply 
the vector originating at P and ending at the reciprocal 
lattice point (l, m). Because of the condition [k01 = Iktml 
the wave vectors ktm are thus completely solved. The 
point l=0 ,  m = 0  always lies inside the circle and it 
gives rise to the forward scattered wave when taking 
the + sign (k00=k0) and the mirror reflected wave 
when taking the - sign. 

Since the domain of our wave functions is an infinite 
three-dimensional space, the expansion (2.6) does not 
have to be equal to g@(r) everywhere in space. In fact, 
one can say that the expansion (2.6) converges to ~u~(r) 
when Izl tends to infinity. In other words, the scattered 
wave field is well described by expansion (2.6) at large 
distances from the scattering plane. From equation 
(2.2) we see that the amplitude of the scattered wave 
field tends to infinity, when r approaches one of the 
vectors rh, whereas this behaviour cannot be deduced 
from (2.6). Now the order of magnitude of b is 10 -az cm 
in a typical case for X-rays or neutrons, and the re- 
flexion coefficients q~  are about 10 -5 . . .  10 -4 unless 
Ikzmzl is exeedingly small. Hence one might say that 
within a sphere of radius 10 -8 . . .  10 -7 cm around each 
scatterer the scattered wave field is mainly determined 
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by this scatterer alone, whereas outside these spheres 
the resultant field from all the scatterers prevails. The 
radius 10 -8 . . .  10 .7 cm is of the order of the inter- 
atomic distance between nearest neighbours, but, be- 
cause the amplitude of the incident wave at each scat- 
terer is about 10 4 . . .  10 5 times larger than the ampli- 
tude of the scattered field due to all the other scat- 
terers, it is justifiable, when considering multiple scat- 
tering effects, to describe the scattered wave field by a 
s u m 0 f  plane waves in all space. 

A typical feature of the solution (2.6) is that the 
reflexion coefficients are real for real values of b, as a 
result of the first order Born approximation. This indi- 
cates a small violation of the energy conservation law, 
since the outcoming flux of particles is not exactly 
equal to the incident flux, but deviates from it by a 
quantity of the order Iq~ [ 2. Because of the smallness 
of this quantity, excluding very small glancing angles 
of any diffracted wave, the first order Born approxima- 
tion is a good one. Higher approximations could be 
obtained by solving the integral equation (1-2) for one 
layer of unit cells with the method of successive ap- 
proximations, which converges very rapidly in this case. 

Up to now we have been discussing the case of point 
scatterers only, but the generalization to diffuse scat- 
terers is quite obvious. In fact, let the scattering power 
inside each unit cell be given by a distribution bf(r), 
normalized by the relation 

I f(r)d3r= 1 . 

unit cell 

The unit cell is here the paraUelepiped, the centre of 
which coincides with rn and the edges with the vectors 
al,a2,a3. Then it is easily found that the formula (2.6) 
remains valid, if the reflexion coefficients are readjusted 
according to the formula 

2rc Nob I q~ - Ikzm~l (jr) exp [ i ( k0 -kN) .  r]d3r (2.8) 
unit cell 

so the above conclusions need not be altered. 

t 

3. The diffraction matrix 

In the previous section we saw that for a given incident 
plane wave a definite even number (M) of diffracted 
waves are generated due to the periodicity of the scat- 
tering plane. If we choose ahy of these diffracted waves 
as a new incident wave, the same assembly of diffracted 
waves is again generated. Thus this assembly of waves 
behaves like a closed system: if the scattering plane 
is illuminated simultaneously by several waves, which 
belong to the same assembly, the outgoing wave field 
is made up exclusively of members of the same assem- 
bly. Such a situation occurs in plane parallel crystals, 
which are composed of several identical parallel crystal 
planes, and is most conveniently described with the 
help of a diffraction matrix. 

Let us order the plane wave components of the as- 
sembly according to index j, ranging from 1 to M, and 
let the corresponding wave amplitude be denoted by 
~0j(r). We now form a column vector ~ ,  where v re- 
places the previous index h 3 ,  in such a way that its j t h  
component is given by the formula 

~ I/l~j~I 
= P '  Ik¢l ~°}n(va3)" (3-1) 

Because ~0j(r) is a two-valued function at the scattering 
planes, we have to distinguish between the incoming 
wave ~0l"(r) and the outgoing wave ~0]Ut(r). The factor 

1/ Ikj~l 
-Ik-~-~l is a cosine factor and takes care of the fact 

that the incident flux of particles passing through a 
unit area of the scattering plane is simply proportional 
to the norm 

M 

II~inll = ~y  ~ ~ ,  
/=1  

where the bar designates the complex conjugate. In a 
similar way we define another column vector ~out to 
describe the assembly of waves propagating outwards 
from the scattering plane and write for its j th  compo- 
nent the formula 

vj = V Ik~l ~°~Ut(va3)" (3.2) 

The relation between ~out and ~n is given by the equa- 
tion 

~°Ut=D~n (3.3) 

which defines the diffraction matrix D. D is indepen- 
dent of v and its matrix elements are easily written down 
with the help of the results of the preceding section 
and definitions (3.1) . . .  (3.3). We obtain 

2rcNob 
D~/=gJs'- i -[/[~l Ik¢'zl- 

I f(r) exp [ i ( k / - k j ) .  rld3r. (3.4) X 

unit cell 

For non-absorbing crystals the incident flux of par- 
ticles must be equal to the departing flux and this is 
expressed by the unitary property of the diffraction 
matrix D. Especially, the formula (3.4) satisfies the 
unitary condition within the framework of the first 
order Born approximation only, upon which its deriva- 
tion was based. Absorption, incoherent scattering, and 
inelastic scattering represent loss channels, through 
which a net flux of particles is escaping out of the wave 
assembly and can phenomenologically be taken into 
account by defining extra components for ~n and ~out, 
whenc: the dimension ofD b~com~s larger than M x M. 
If these loss effects arc not strong, and if we want to 
calculate only memb:rs of the assembly emerging out 
of the crystal, the calculation can b2 reduced to 
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(M x M) space by modifying the elements of D in the 
same way as the ordinary absorption is usually taken 
into account by complex values of the scattering length 
b. Having developed the theory for scalar waves, we 
would like to point out that the two polarization com- 
ponents of X-rays, and the existence of spin correlation 
between nuclei in the neutron case, do not essentially 
complicate the theory. The dimension of D is merely 
(2Mx 2M) instead of ( M x  M), although some diffi- 
culties may be encountered in working out the matrix 
elements of D. 

4. Diffraction by N infinite crystal planes 

4.1. The general solution 
The diffraction matrix D was very easily defined with 

the help of column vectors ~tn and ~o,t. When combin- 
ing the effect of all N scattering planes, however, two 
new column vectors if+ and ~- are introduced, defined 
by formulae: 

if+ = p+~out + p-~ , ,  (4.1) 

¢~- = p-~out + p + ~ n ,  (4"2) 

which are much more convenient. P+ and P -  are pro- 
jection operators which pick up waves propagating in 
the positive and negative directions among the mem- 
bers of the assembly. Thus if+ represents the wave field 
at the positive side of the vth plane, and ~- at the 
negative side. The relation between ~v-+l and ~+ is now 
given by the formula 

~-+1 = ~ + ,  (4.3) 

where the phase matrix ~ takes care of the phase dif- 
ferences over the translation a3 between two successive 
planes. ~0 is a diagonal matrix, the elements of which 
are given by the formula 

~011, = exp ( ikl .  a3)~ll, . (4.4) 

With the help of definitions (3.1) . . .  (3.3) and (4.1) . . .  
(4.3) we are able to derive the recurrence formula 

if++1 = T~ + , (4.5) 

where T is given as the matrix product 

T=  [P+D + e - I  tP-D + e + l - ~ .  (4.6) 

Because the index v ranges from 0 to N -  1, we find 
that the column vector ~in describing the wave field 
incident on the whole crystal is represented by the 
combination 

¢in = P +~in --~ P - ~ _  1 . (4.7) 

In a similar way the column vector, 

~out= p-~sut + e + ~ r ~ ,  (4.8) 

represents the wave field emerging from the crystal. 
The effect of the whole crystal is to transform the inci- 
dent wave field to the departing one according to the 
formula 

~out = S2v~ln. (4.9) 

The matrix S2v can be considered as our final result• 
Making use of the definitions of the column vectors 
and the given relations between them we obtain 

SN = {P-D + P+ TN~O-x[P-D + P+]} 
{P++P-T2V~- I tP -D+P+I}  -1 . (4"10) 

It is easy to prove that from the unitarity of D (non- 
absorbing crystal) the unitarity of S2v follows, express- 
ing the conservation of flux of particles. In practice we 
want to calculate the waves emerging from the crystal, 
when it is illuminated by one plane wave only. ~Jn then 
takes the form 

r- 1 - 

0 
0 

¢ln = . (4-11) 

0 
m 

and it is necessary to calculate only the elements S~vaj 
( j =  1 . . .  M) which are then equal to the desired com- 
ponents ~),ut. Defining the power reflexion coefficient 
Pr, and power transmission coefficient Pt of the crystal 
as the flux of particles in the reflected, or transmitted 
beam, through a unit surface of the plane parallel 
crystal, relative to unit incident flux, we find the simple 
connexions: 

Pt=lSNlll  z (4"12) 

Pr~ = l S2vlJ~ll z • (4" 13) 

M 
For a unitary SN the equation Pt + Z PrJ = 1 is satis- 

j=2 
fled. 

The most difficult point in applying the formula 
(4.10) is the calculation of T 2v since the interesting 
values of N range from 103 up to 105 in a typical case. 
If the calculations are carried out numerically with a 
computer, this is no problem, but if analytic expres- 
sions are desired, one has to solve the eigenvalues of T, 
with the help of which T N can be written down ex- 
plicitly. Let us consider T in more detail. From for- 
mulae (3.4), (4.4) and (4.6) we conclude that all the 
off-diagonal elements of T are small and the main 
diagonal elements are approximately the same as those 
of q~. The eigenvalues of T are thus roughly 2j= 
exp ikj .  a3. The off-diagonal elements of T N, for large 
N, are in general also small, unless two or more eigen- 
values 2j happen to be very near to each other. Because 
of the form (4.11) for ~in, at least one of the eigenvalues 
).j,~l must be very near to 21 if any considerable flux 
of particles is expected to emerge from the crystal, 
excluding the forward scattered wave. The so called 
two-wave approximation is based on the assumption 
that only one of the eigenvalues, say 22 is in the im- 
mediate vicinity of 21. In this case the whole calculation 
can be performed in (2 x 2) space. Let us assume that 
kl points in the positive direction• Now, depending on 
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w h e t h e r  k2 points in the positive or negative direction 
we can distinguish two cases. The former is called the 
Laue case and the latter the Bragg case in the diffrac- 
tion literature. Because the solutions differ consider- 
ably from each other, we shall, in what follows, con- 
sider each case in a separate sub-section. 

4.2. The two-wave approximation in the Laue case 

Here the reduction in (2 x 2) space means that P+ 
is replaced by the identity matrix 1 and P -  by zero. 
From equation (4.6) we see that T reduces to D ~  and 
from equation (4.10) we see that SN reduces to 
[D~]~v~ -1 . 

With the help of the definitions 

(k2 + kl) .  a3 = 2Q 

(k2-  kl) .  a3 = 2(nzc + tp), (4.14) 

can be written as 

tb=eio [ e ;  ~ e+0i~] . (4.15) 

An explicit representation for the diffraction matrix 

D =  [1 - iTu  -- iy12] (4"16) 
i721 1 /722J 

is obtained from formula (3.4) adopting the notation 

2nNob 

7z'= l/I)-~j~l Ikj'~l 

f f(r) exp [ i (k / -k j . ) .  r]dar. (4.17) × 

unit cell 

The eigenvalues of 

T = e i  ° [(1 -iYu) e -i~ -i712 e +~ ] (4.18) / - -  i721 e - i v  (1 - -  i722) e+WJ 

calculated in the lowest order approximation are: 

2+= exp iQ exp i[--½(711+722)+TL] , (4"19) 

where we have used the notation 

ZL = I/[~S+ ½(Yll - 722)]2+ 712721 • (4"20) 

Since T is a (2 × 2) matrix, T N can be written as T iv = 
~ T + f l  1 where the coefficients ~,fl solved from the equa- 
tions 2~ = c~2± +fl are: 

c~= exp { i ( N -  1) [Q-½(Yn+ 722)]} sin NzL/sin TL 

f l = -  eXp {iN[e-½(Ylx + 722)]} sin (N-1 )ZL / s in  rL .  

The desired matrix elements SN~I and SN12 can now 
be calculated by dropping the higher order terms, and 
are given by formulae: 

SN11 : (~Tll + f l ) q ~  , SN12 = c~T~z¢fi I • 

By substitution of the relevant quantities, the following 
well known result, for real values of 711, 7zz and 7127zi, 
is obtained from formulae (4.12) and (4.13): 

Pt = c o s z N z L  + "c~ --  712721 - s i n Z N z  L 

pr = 712Y21 sinZNrz. (4-21) 

The condition Pt+ Pr = 1 is satisfied by formula (4.21). 

4.3. The two-wave approximation in the Bragg case 

Here the representations of the projection operators 
a r e  

, 

and no simplification in the form of T or Sty can be 
made. From formulae (4.6), (4.15), and (4-16), by 
dropping the second order terms in 7 we get the repre- 
sentation: 

T = e ,  ° [(1-i711) e_i~ --i712 e+i~ ] (4.22) 
[. + i721 e-~ (1 + i722) e+~ J " 

The eigenvalues of T in the lowest order approxima- 
tion are 

2+ = exp iQ exp [ -  i½(7u - 722) -+ zB], (4-23) 

where 

TB = ¢712721 - -  [(ff "~ ~(711 "31- 722)] 2 . (4.24) 

As a (2 x 2) matrix T iv can be written as T N = c~T+fl 1 
where the coefficients c~,fl solved from the equations 
2~ = ~2+ +fl are: 

c~= exp { i ( N -  1) [e-½(711- 722)]) sinh NzB/sinh ZB 

f l= -- exp {iN[Q-½(Tu-722)]} sinh ( N -  1)ZB/sinh Zn.  

The required elements of Sly can now be calculated 
with the help of formulae (4.10), (4.16), and (4.22). 
Dropping the higher order terms one can write 

Slvu = [(ct Tll + fl) (~T22 + f l ) -  ~2T12 T2d/(~tT22 + fl) e -i~' , 

SN12 = - ~T21 eU~/aT22 + f t .  

Substituting the expressions for the relevant quantities, 
and making use of the definitions (4.12) and (4-13) one 
arrives at the results: 

P~ = (z~ coth2Nr B -- z2B )/(712~2, -- z~ + z~ coth2NTB) 

Pr=Y12721/ (712Y21-  T 2 + z2 coth2grB) (4.25) 

for real values of 711, 722 and 712721. Here again 
P~ + Pr = 1 is true. 

5. Discussion 

The matrix formalism developed in this paper can also 
be considered as a system of difference equations, 
which as a special case include both Darwin's (1914) 
classical treatment and the equations recently given by 
Bode (1966). At this point a comment can be made 
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on Raith's (1966) remark on page 31 of his thesis. He 
states that the factor ' i ' ,  in an expression of Darwin's 
theory corresponding to our formula (2.6), is due to a 
calculation error. This confusion is best explained by 
referring to Fig. 2. In case (a) there is an infinitely large 
crystal plane and a 'plane wave', modified by a slowly 
varying exponential attenuation factor, which makes 
the field vanish at infinity. After carrying out the inte- 
gration involved (see Appendix) this attenuation factor 
is made to converge to 1 and this procedure gives the 
above mentioned factor 'i ' .  In case (b) there is a large 
finite crystal plane and a plane wave. Here the dif- 
fracted field does not converge to any definite limit as 
the crystal is made larger and larger. Therefore, at 
small distances from the crystal the phase of the dif- 
fracted field is a function of position and cannot be 
given by a single phase factor. However, at distances 
large compared with the crystal dimensions the dif- 
fracted wave can be described by spherical waves with 
definite phase compared with the incident wave. 

Let us briefly summarize the essential features of the 
formalism developed above. It is sufficient to define 
one wave number only, namely that in vacuum. The 
system of equations is finite and the number of equa- 
tions is twice the number of reciprocal lattice points 
within the circle constructed in Fig. 1. The major com- 
ponents are found by considering the eigenvalues of 
matrix T or diagonal elements of the phase matrix 4.  
All the physically interesting information is contained 
in the matrix T, from the properties of which one can 
deduce such typical phenomena of the dynamical dif- 
fraction theory as anomalous absorption and 'um- 
weganregung'. Because of the simple framework of the 
theory calculations are easily programmed for a com- 
puter. 

For comparison, let us list the typical features of the 
conventional theory, based on ordinary Fourier-expan- 

(a) 

t I 

(b) 

Fig.2. An infinite crystal plane illuminated by a modified 
plane wave (a), and a finite crystal plane illuminated by an 
unmodified plane wave (b). 

sions [see e.g. James (1963)]. Distinction between wave 
numbers in vacuum and in crystal matter must be 
made. The number of unknowns and equations is 
infinite. The large components are those in the im- 
mediate vicinity of the Ewald sphere. Programming 
the problem for a computer is not straightforward. 

For crystals composed of atoms with finite mass the 
thermal motion of the crystal can be taken into ac- 
count only by averaging the static potential over the 
assumed motion of atoms. Hence the formula (2.8) can 
be thought to include the Debye-Waller factor. The 
effect of inelastic scattering on coherent elastic scat- 
tering can be phenomenologically treated in a similar 
way to ordinary absorption, as stated in § 3. However, 
to calculate the inelastically scattered waves them- 
selves would require a much more complicated theory 
than the present one. 

APPENDIX 

Calculation of  the integral 
! 

J = I f ~ d x d y e x p ( - i k l u y )  eXPiko Vx2+y2+zz 
]~x-T-+ y2 3r zZ 

Let us introduce new variables (u, (p) defined by equa- 
tions" 

[Ju2-k;2z2 
x . . . . . .  sin fa 

k~ 

ko l/(uE_k,2zE) cos~+uk,u/k ,Z (A1) 
Y= k; 

where 
• - 2  2 k ~ = ~ k o - k , y  . (A2) 

u is the phase angle of the integrand of J and the curves 
u = constant on the plane (x,y) are ellipses, the param- 
eter equations of which are given in (A1). In order to 
calculate the surface element dA =dxdy=Jdudq~ the 
Jacobian 

8x 8x 

J =  
8y 8y 

must be evaluated. The required partial derivatives are 
obtained from equation (A1) and with the help of these 
the Jacobian is found to be 

J=kou/kz s +klu cos ~V'u2-k'~ZzE/k'~ s . (A3) 

On the other hand for the denominator of the inte- 
grand of o¢ the following expression can be derived 

l/x 2 + y2 + z 2 = kou/k'z 2 + k ly COS ~ V ' u  2 - k'z2z2/k'z 2 • 

Combining this with (A3) we find that J is simply given 
by the formula 
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J = f  x2+ y~+ z,/k; . (A4) 
The integral J can now be written as 

f . . . .  12,~ 2~i J =  du dfo exp iu/k'~= 
Um,n 0 k'~ 

x [ exp iUmin-- exp iUmax] (A5) 

where Umin = k'Azl and Umax-+ oo. Because u is real o¢ 
does not converge to any definite limit but oscillates 
along a closed curve in the complex plane, when Umax 
tends to infinity. This difficulty, due to the fact that 
plane waves do not vanish at infinity, can be overcome 
by multiplying the integrand in (A5) by a factor 
exp - eu ,  where e is a small positive number. In this 
case we can write 

2rci 
o¢~- k~(1 + ie) exp ( i-e)k ' , lz l .  

Now, letting e converge to zero the result 

2zci 
J =  ,_--/7 exp ik'Az[ (m6) 

tc z 
is obtained. 
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